團隊負責人:潘保田
93. Zhang Y, Geng H, Cai S, Pan B. Tan DEM-X preserves the relationship between hilltop curvature and erosion rate in
the Qilian Shan. Journal of Geophysical Research: Earth Surface, 2023, 128(9): e2023JF007118.
92. Pan B, Li X, Hu Z, et al. Channel migration in the northeastern margin of the Tibetan Plateau and its implication
for fluvial response to the interaction between rapid tectonic activity, climatic fluctuation and human influence.
Quaternary Science Reviews, 2023, 310: 108126.
91. Pan B, Guan W, Shi M, et al. Different characteristics of two surges in Weigeledangxiong Glacier, northeastern
Tibetan Plateau. Environmental Research Letters, 2022, 17(11): 114009.
90. Guan W, Cao B, Pan B, et al. Updated surge-type glacier inventory in the West Kunlun Mountains, Tibetan Plateau,
and implications for glacier change. Journal of Geophysical Research: Earth Surface, 2022, 127(1): e2021JF006369.
89. Tian L, Zhang B, Chen S, Wang X, Ma X, Pan B. Large‐Scale Afforestation Enhances Precipitation by Intensifying the
Atmospheric Water Cycle Over the Chinese Loess Plateau. Journal of Geophysical Research: Atmospheres, 2022, 127
(16): e2022JD036738.
88. Wen Z, Chen D, Guo L, Pan B, Hu X, Li Q, Ji X, Jiaming Yang. Response of terrace deposit thickness to climate
change and tectonic deformation: An example of the Liyuan River in the Northeast Tibetan Plateau. Terra Nova,
2022, 34(1): 37-46.
87. Geng, H., Cai, S., Lü, H., Pan, B. (2022). How can a youthful mountain survive in a foreland setting?-Constraining
the uplift threshold rate by numerical simulation. Science bulletin, 67 12, 1233-1235.
86. Pan B, Guan W, Shi M, et al. Different characteristics of two surges in Weigeledangxiong Glacier, northeastern
Tibetan Plateau. Environmental Research Letters, 2022, 17(11): 114009.
85. Pan B, Zhao Q, Hu X, et al. Uplift and Expansion of the North Qilian Shan Recorded by Detrital Fission Tracks in
the Jiudong Basin, NW China. Frontiers in Earth Science, 2022, 9: 826104.
84. Dong Z, Pan B, Hu Z, et al. Evaluation of the Fluvial Response to Tectonic Uplift From Grain-Size Distribution in
Riverbed Gravels at the Northeastern Margin of the Tibetan Plateau. Continental Basin and Orogenic Processes:
Tectonic Deformation and Associated Landscape and Environmental Evolution, 2022, 10: 824368.
83. Pan B, Cai S, Geng H. Numerical simulation of landscape evolution and mountain uplift history constrain—A case
study from the youthful stage mountains around the central Hexi Corridor, NE Tibetan Plateau. Science China Earth
Sciences, 2021, 64: 412-424.
82. Hu, X., Cao, X., Li, T., Mao, J., Zhang, J., He, X., Zhang, Y. n., and Pan, B., 2021, Late Quaternary Fault Slip
Rate Within the Qilian Orogen, Insight Into the Deformation Kinematics for the NE Tibetan Plateau: Tectonics, v.
40, no. 5, p. e2020TC006586.
81. Gao, P., Nie, J., Yan, Q., Zhang, X., Liu, Q., Cao, B., and Pan, B., 2021, Millennial Resolution Late Miocene
Northern China Precipitation Record Spanning Astronomical Analogue Interval to the Future: Geophysical Research
Letters, v. 48, no. 15, p. e2021GL093942.
80. Cao X, Hu X, Pan B, et al. Using fluvial terraces as distributed deformation offset markers: Implications for
deformation kinematics of the North Qilian Shan Fault. Geomorphology, 2021, 386: 107750.
79. Cao, B.; Guan, W.; Li, K.; Wen, Z.; Han, H.; Pan, B. Area and Mass Changes of Glaciers in the West Kunlun Mountains
Based on the Analysis of Multi-Temporal Remote Sensing Images and DEMs from 1970 to 2018. Remote Sens. 2020, 12,
2632.
78. Hu X, Chen D, Pan B, et al. Sedimentary evolution of the foreland basin in the NE Tibetan Plateau and the growth of
the Qilian Shan since 7 Ma. GSA Bulletin, 2019, 131(9-10): 1744-1760.
77. Hu, Z., Li, M., Dong, Z., Guo, L., Bridgland, D., Pan, B., Li, X., and Liu, X., 2019, Fluvial entrenchment and
integration of the Sanmen Gorge, the Lower Yellow River: Global and Planetary Change, v. 178, p. 129-138.
76. Cao X, Hu X, Pan B, et al. A fluvial record of fault-propagation folding along the northern Qilian Shan front, NE
Tibetan Plateau. Tectonophysics, 2019, 755: 35-46.
75. Cao B, Pan B, Wen Z, et al. Changes in glacier mass in the Lenglongling Mountains from 1972 to 2016 based on remote
sensing data and modeling. Journal of Hydrology, 2019, 578: 124010.
74. Cao B, Pan B, Guan W, et al. Changes in glacier volume on Mt. Gongga, southeastern Tibetan Plateau, based on the an
alysis of multi-temporal DEMs from 1966 to 2015. Journal of Glaciology, 2019, 65(251): 366-375.
73. Li Q, Pan B, Gao H, et al. Differential rock uplift along the northeastern margin of the Tibetan Plateau inferred
from bedrock channel longitudinal profiles. Journal of Asian Earth Sciences, 2019, 169: 182-198.
72. Hu Z B, Pan B T, Bridgland D, et al. The linking of the upper-middle and lower reaches of the Yellow River as a
result of fluvial entrenchment. Quaternary Science Reviews, 2017, 166: 324-338.
71. Gao, H., Li, Z., Liu, X., Pan, B., Wu, Y., and Liu, F., 2017, Fluvial terraces and their implications for Weihe
River valley evolution in the Sanyangchuan Basin: Science China Earth Sciences, v. 60, no. 3, p. 413-427.
70. Cao B, Pan B, Cai M, et al. An investigation on changes in glacier mass balance and hypsometry for a small
mountainous glacier in the northeastern Tibetan Plateau. Journal of Mountain Science, 2017, 14(8): 1624-1632.
69. Hu Z, Pan B, Guo L, et al. Rapid fluvial incision and headward erosion by the Yellow River along the Jinshaan gorge
during the past 1.2 Ma as a result of tectonic extension. Quaternary Science Reviews, 2016, 133: 1-14.
68. Pan B, Pang H, Gao H, et al. Heavy-mineral analysis and provenance of Yellow River sediments around the China Loess
Plateau. Journal of Asian Earth Sciences, 2016, 127: 1-11.
67. Pan B, Chen D, Hu X, et al. Drainage evolution of the Heihe River in western Hexi Corridor, China, derived from
sedimentary and magnetostratigraphic results. Quaternary Science Reviews, 2016, 150: 250-263.
66. Pan B, Pang H, Zhang D, et al. Sediment grain-size characteristics and its source implication in the Ningxia-Inner
Mongolia sections on the upper reaches of the Yellow River. Geomorphology, 2015, 246: 255-262.
65. Pan B, Li Q, Hu X, et al. Bedrock channels response to differential rock uplift in eastern Qilian Mountain along
the northeastern margin of the Tibetan Plateau. Journal of Asian Earth Sciences, 2015, 100: 1-19.
64. Zhang G, Pan B, Cao B, et al. Elevation changes measured during 1966–2010 on the monsoonal temperate glaciers'
ablation region, Gongga Mountains, China. Quaternary International, 2015, 371: 49-57.
63. Pan B, Guan Q, Liu Z, et al. Analysis of channel evolution characteristics in the Hobq Desert reach of the Yellow
River (1962–2000). Global and Planetary Change, 2015, 135: 148-158.
62. Geng H, Pan B, Milledge D G, et al. Quantifying sheet wash erosion rates in a mountainous semi‐arid basin using
environmental radionuclides and a stream power model.Earth surface processes and landforms,2015,40(13):1814-18 26.61. Cao B, Pan B, Wang J, et al. Changes in the glacier extent and surface elevation along the Ningchan and Shuiguan
river source, eastern Qilian Mountains, China. Quaternary Research, 2014, 81(3): 531-537.
60. Pan B, Guan Q, Gao H, et al. The origin and sources of loess‐like sediment in the Jinsha River Valley, SW China.
Boreas, 2014, 43(1): 121-131.
59. Pan B, Hu X, Gao H, et al. Late Quaternary river incision rates and rock uplift pattern of the eastern Qilian Shan
Mountain, China. Geomorphology, 2013, 184: 84-97.
58. Pan B, Qingyang L, Xiaofei H, et al. Cretaceous and Cenozoic cooling history of the eastern Qilian Shan,
north-eastern margin of the Tibetan Plateau: evidence from apatite fission‐track analysis. Terra Nova, 2013,
25(6): 431-438.
57. Guan Q, Pan B, Yang J, et al. The processes and mechanisms of severe sandstorm development in the eastern Hexi
Corridor China, during the Last Glacial period. Journal of Asian Earth Sciences, 2013, 62: 769-775.
56. Pan B, Hu Z, Wang J, et al. The approximate age of the planation surface and the incision of the Yellow River.
Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 356: 54-61.
55. Pan B, Cao B, Wang J, et al. Glacier variations in response to climate change from 1972 to 2007 in the western
Lenglongling mountains, northeastern Tibetan Plateau. Journal of Glaciology, 2012, 58(211): 879-888.
54. Pan B, Zhang G L, Wang J, et al. Glacier changes from 1966–2009 in the Gongga Mountains, on the south-eastern
margin of the Qinghai-Tibetan Plateau and their climatic forcing. The Cryosphere, 2012, 6(5): 1087-1101.
53. Pan B, Hu Z, Wang J, et al. A magnetostratigraphic record of landscape development in the eastern Ordos Plateau,
China:Transition from Late Miocene and Early Pliocene stacked sedimentation to Late Pliocene and Quaternary uplift
and incision by the Yellow River. Geomorphology, 2011, 125(1): 225-238.
52. Qingyu G, Pan B, Na L, et al. Timing and significance of the initiation of present day deserts in the northeastern
Hexi Corridor, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 306(1-2): 70-74.
51. Qingyu G, Pan B, Na L, et al. A warming interval during the MIS 5a/4 transition in two high-resolution loess
sections from China. Journal of Asian Earth Sciences, 2010, 38(6): 255-261.
50. Yu G Q, Pan B, Na L, et al. Pattern of abrupt climatic fluctuation in the East Asian Monsoon during the Last
Glacial: Evidence from Chinese loess records. Comptes Rendus Geoscience, 2010, 342(3): 189-196.
49. Pan B, Geng H, Hu X, et al. The topographic controls on the decadal-scale erosion rates in Qilian Shan Mountains,
NW China. Earth and Planetary Science Letters, 2010, 292(1-2): 148-157.
48. 高陽,蔡順,潘保田,熊巨華.地貌學領域自然科學基金項目申請資助、研究范式與啟示.科學通報
47. 洪洋,耿豪鵬,潘保田.寒凍風化控制的祁連山風化碎屑的空間分布.冰川凍土,2022,44(04):1347-1356.
46. 潘保田,郭明宙,喬振峰.創新高等理科教育 提高人才培養能力.高等理科教育,2021(05):1-7.
45. 潘保田,曹泊,管偉瑾.2010—2020年祁連山東段冷龍嶺寧纏河1號冰川變化綜合觀測研究.冰川凍土,2021,43(03):864-873.
44. 秦大河,姚檀棟,周尚哲,陳發虎,潘保田,康世昌.李吉均先生紀念專刊·編者按.冰川凍土,2021,43(03):681-682.
43. 潘保田,胡振波.黃河中游響應氣候變化和地表相對抬升發育階地研究.冰川凍土,2021,43(03):853-863.
42. 樊云龍,潘保田,胡振波,任大銀,陳起偉,劉芬良,李宗盟.云貴高原北盤江流域構造地貌特征分析.地球科學進展,2018,33(07):751-76
1.
41. 高紅山,李宗盟,劉小豐,潘保田,吳雅婕,劉芬良.三陽川盆地渭河階地發育與河谷地貌演化.中國科學:地球科學,2017,47(02):191-20
4.
40. 潘保田.完善治理結構 加快現代大學制度建設步伐.世界教育信息,2014,27(01):69-70.
39. 吉亞鵬,高紅山,潘保田,李宗盟,管東升,杜功元.渭河上游流域河長坡降指標SL參數與Hack剖面的新構造意義.蘭州大學學報(自然科
學版),2011,47(04):1-6.
38. 曹泊,潘保田,高紅山,姜少飛,溫煜華,上官冬輝.1972-2007年祁連山東段冷龍嶺現代冰川變化研究.冰川凍土,2010,32(02):242-248.
37. 耿豪鵬,潘保田,王超,黃波.基于GIS與USLE的榆中縣土壤侵蝕.蘭州大學學報(自然科學版),2009,45(06):8-13.
36. 李瓊, 潘保田, 程維明. 基于RS與GIS的1:100萬數字地貌制圖方法——以蘭州幅(J—48)為例. 蘭州大學學報:自然科學版, 2009
(5):7.
35. 管清玉,潘保田,徐樹建,鄔光劍,李娜,趙明,徐先英,潘俊斌.騰格里沙漠南部(河西走廊東段)沙塵暴代用指標初探.自然科學進展,
2009,19(01):69-74.
34. 劉鋒,潘保田,蘇懷.蘭州地區黃河第五級小沙溝階地古地磁年代研究.中國沙漠,2008(05):821-826.
33. 胡小飛,潘保田.磷灰石(U-Th)/He熱年代學方法及其在地貌演化研究中的應用.原子能科學技術,2008(07):662-664.
32. 潘保田,李萬里,徐鵬彬.以科技創新提升高校科研水平——蘭州大學科研實踐的思考.研究與發展管理,2008(02):118-121.
31. 褚娜娜,潘保田,王均平,胡振波,蘇懷,周天,胡小飛.汾渭盆地黃土剖面0.9Ma前后的粒度突變及其環境意義.中國沙漠,2008(01):50-
56.
30. 潘保田,劉小豐,高紅山,王勇,李吉均.渭河上游隴西段河流階地的形成時代及其成因.自然科學進展,2007(08):1063-1068.
29. 劉小豐,潘保田,高紅山,王勇,張慧,王均平.渭河河流沉積物對氣候變化的響應分析.干旱區資源與環境,2007(05):6-9.
28. 劉小豐,潘保田,高紅山,王勇,王均平,張慧,胡春生.渭河L9時期(0.87~0.94Ma)古洪水事件的特征研究.干旱區地理,2007(02):
247-250.
27. 潘保田,蘇懷,劉小豐,胡小飛,周天,胡春生,李吉均.蘭州東盆地最近1.2Ma的黃河階地序列與形成原因.第四紀研究,2007(02):
172-180.
26. 李瓊,潘保田,高紅山,徐樹建.騰格里沙漠南緣末次冰盛期以來沙漠演化與氣候變化.中國沙漠,2006(06):875-879.
25. 潘保田,蘇懷,胡春生,胡小飛,周天,李吉均.蘭州地區1.0Ma黃河階地的發現和0.8Ma階地形成時代的重新厘定.自然科學進展,2006
(11):1411-1418.
24. 潘保田,王均平,高紅山,陳瑩瑩,李吉均,劉小豐.從三門峽黃河階地的年代看黃河何時東流入海.自然科學進展,2005(06):700-705.
23. 高紅山,潘保田,鄔光劍,李吉均,李炳元,Douglas Burbank,業渝光.祁連山東段河流階地的形成時代與機制探討.地理科學,2005(02):
197-202.
22. 高紅山,潘保田,李吉均,鄔光劍,李炳元,業渝光.祁連山東段金塔河流域層狀地貌時代與成因探討.山地學報,2005(02):129-135.
21. 潘保田,王均平,高紅山,管清玉,王勇,蘇懷,李炳元,李吉均.河南扣馬黃河最高級階地古地磁年代及其對黃河貫通時代的指示.科學通報,2005(03):255-261.
20. 潘保田, 高紅山, 李炳元,等. 青藏高原層狀地貌與高原隆升. 第四紀研究, 2004.
19. 潘保田,高紅山,李吉均.關于夷平面的科學問題——兼論青藏高原夷平面.地理科學,2002(05):520-526.
18. 潘保田,鄔光劍,王義祥,劉志剛,管清玉.祁連山東段沙溝河階地的年代與成因.科學通報,2000(24):2669-2675.
17. 潘保田,李吉均,李炳元.青藏高原地面抬升證據討論.蘭州大學學報,2000(04):100-111.
16. 潘保田.代表我國冰凍圈地貌與沉積研究躍上新臺階的一部力作──《中天山冰凍圈地貌過程與沉積特征》評介.冰川凍土,2000
(01):96.
15. 潘保田,王建民.末次間冰期以來青藏高原東部季風演化的黃土沉積記錄.第四紀研究,1999(04):330-335.
14. 潘保田,陳發虎.青藏高原東北部15萬年來的多年凍土演化.冰川凍土,1997(02):30-38.
13. 潘保田,鄔光劍.青藏高原東北部最近兩次冰期降溫幅度的初步估算.干旱區地理,1997(02):17-24.
12. 潘保田,李吉均,曹繼秀,陳發虎.化隆盆地地貌演化與黃河發育研究.山地研究,1996(03):153-158.
11. 潘保田,李吉均.青藏高原:全球氣候變化的驅動機與放大器──Ⅲ.青藏高原隆起對氣候變化的影響.蘭州大學學報,1996(01):108-
115.
10. 潘保田,石生仁,朱俊杰.河西經濟帶建設在大西北開發中的地位與作用.干旱區地理,1996(01):32-37.
9. 潘保田,李吉均,朱俊杰,曹繼秀.青藏高原:全球氣候變化的驅動機與放大器──Ⅱ.青藏高原隆起的基本過程.蘭州大學學報,1995
(04):160-167.
8. 潘保田,李吉均,陳發虎.青藏高原:全球氣候變化的驅動機與放大器──Ⅰ 新生代氣候變化的基本特征.蘭州大學學報,1995(03):
120-128.
7. 王乃昂,潘保田.我國高等地理教育的發展和問題.高等理科教育,1995(03):18-23.
6. 潘保田.貴德盆地地貌演化與黃河上游發育研究.干旱區地理,1994(03):43-50.
5. 潘保田,李吉均,曹繼秀.黃河中游的地貌與地文期問題.蘭州大學學報,1994(01):115-123.
4. 潘保田,李吉均,周尚哲.青藏高原倒數第二次冰期冰楔的發現及其意義.科學通報,1992(17):1599-1602.
3. 潘保田,徐叔鷹,陳發虎,曹繼秀,張宇田.青海高原東部三萬年來自然環境變遷的序列與幅度探討.干旱區地理,1989(02):14-21.
2. 潘保田,徐叔鷹.青海高原東部晚第四紀自然環境演化探討.科學通報,1989(07):534-536.
1. 潘保田.隴西黃土高原農業發展方向初探.地域研究與開發,1988(02):27-32.
團隊骨干成員:聶軍勝
78. Liu, X., Nie, J., Zhou, B. and Zhang, Z., 2023. East Asian summer monsoon variations across the Miocene?Pliocene
boundary recorded by sediments from the Guide Basin, northeastern Tibetan Plateau. GSA Bulletin.
77. Li, M., Nie, J., Li, Z., Pullen, A., Abell, J.T., Zhang, H., McMechen, C.A. and Pan, B., 2023. A middle Pleistocene
to Holocene perspective on sediment sources for the Tengger Desert, China. CATENA, 228: 107119.
76. Yang, J., Nie, J., Zhang, H., Rasmeni, S.K., Ncube, L., van Niekerk, H.J., Zhao, B. and Hu, X., 2023. Sr-Nd-Hf
isotopic constraints on the provenance of the modern Zambezi River sand sediments, southern Africa.Basin Research,
35(3): 1053-1070.
75. Li, S., Nie, J., Ren, X., Xing, L., Tong, F. and Xiao, Y., 2023. Increased primary mineral dissolution control on
a terrestrial silicate lithium isotope record during the middle Miocene Climate Optimum.Geochimica et Cosmochimica
Acta, 348: 41-53.
74. Peng, W., Zhang, H., Pullen, A., Li, M., Pan, B., Xiao, W. and Nie, J., 2023. Stepwise increased spatial provenance
contrast on the Chinese Loess Plateau over late Miocene-Pleistocene. Communications Earth & Environment, 4(1): 60.
73. Nie, J., Wang, W., Heermance, R., Gao, P., Xing, L., Zhang, X., Zhang, R., Garzione, C. and Xiao, W., 2022. Late
Miocene Tarim desert wetting linked with eccentricity minimum and East Asian monsoon weakening. Nature
Communications, 13(1): 3977.
72. Wang, X., Nie, J., Stevens, T., Zhang, H. and Xiao, W., 2022. Resolving conflicting models of late Miocene East
Asian summer monsoon intensity recorded in Red Clay deposits on the Chinese Loess Plateau. Earth-Science Reviews:
104200.
71. Zhang, H., Li, M., Peng, W., Zhang, Z. and Nie, J., 2022. No major temporal provenance variation on the Chinese
Loess Plateau since the late Miocene — insight from stable heavy mineral ratios. Geosystems and Geoenvironment,
1(2): 100022.
70. Guo, B., Nie, J., Li, J., Xiao, W., Pan, F. Expansion/shrinkage history of the Paratethys Sea during the Eocene:
New insights from eolian Red Clay records in the Altyn Mountains, northern China. Frontiers in Earth Science, 10,
2022.
69. Guo, B., Nie, J., Stevens, T., Buylaert, J.-P., Peng, T., Xiao, W., Pan, B., Fang, X. Dominant precessional forcing
of the East Asian summer monsoon since 260 ka. Geology, 50(12): 1372-1376, 2022.
68. Peng, F., Nie, J., Stevens, T., Pan, B. Decoupled Chinese Loess Plateau Dust Deposition and Asian Aridification at
Millennial and Tens of Millennial Timescales. Geophysical Research Letters, 49(20): e2022GL099338, 2022.
67. Cheng, F., Garzione, C., Li, X., Salzmann, U., Schwarz, F., Haywood, A.M., Tindall, J., Nie, J., Li, L., Wang, L.,
Abbott, B.W., Elliott, B., Liu, W., Upadhyay, D., Arnold, A., Tripati, A. Alpine permafrost could account for a
quarter of thawed carbon based on Plio-Pleistocene paleoclimate analogue. Nature Communications, 13(1): 1329,
2022.
66. Wang, X., Nie, J., Saylor, J.E. Anti-Phase Strengthening of the South and East Asian Summer Monsoons During the
Early Pliocene Driven by Southern Hemisphere Ice Volume. Paleoceanography and Paleoclimatology, 36(5):
e2021PA004211, 2021.
65. Wang, H., Gao, P., Yang, R., Nie, J., Cao, B., Zhou, A., Pan, B., Chen, L., Peng, T. Correlation Between brGDGTs
Distribution and Elevation From the Eastern Qilian Shan. Frontiers in Earth Science, 10, 2022.
64. Gao, P., Nie, J., Yan, Q., Zhang, X., Liu, Q., Cao, B., Pan, B. Millennial Resolution Late Miocene Northern China
Precipitation Record Spanning Astronomical Analogue Interval to the Future. Geophysical Research Letters, 48(15):
e2021GL093942, 2021.
63. Gao, P., Nie, J., Yan, Q., Zhang, X., Liu, Q., Cao, B., Pan, B. Millennial Resolution Late Miocene Northern China
Precipitation Record Spanning Astronomical Analogue Interval to the Future. Geophysical Research Letters, 48(15):
e2021GL093942, 2021.
62. Liu, F., Dani?ík, M., Zheng, D., Gallagher, K., Nie, J. Distinguishing tectonic versus climatic forcing on
landscape evolution: An example from SE Tibetan Plateau. GSA Bulletin, 133(1-2): 233-242, 2020.
61. Luo, Z., Nie, J., Moe, A.E., Heermance, R.V., Garzione, C., Herbert, T.D., Wang, Z., Li, H., Zhang, R., Zhao, X., S
alzmann, U. Joint insolation and ice sheet/CO2 forcing on northern China precipitation during Pliocene warmth.
Science Bulletin, 66(4): 319-322, 2021.
60. Yang, J., Nie, J., Garzanti, E., Limonta, M., Andò, S., Vermeesch, P., Zhang, H., Hu, X., Wang, Z., Zhao, B.,
Ncube, L.,Stevens, T., Li, M., Li, H., Chen,T.,Miao,Y., Pan, B.Climatic Forcing of Plio-Pleistocene Formation of
the Modern Limpopo River, South Africa. Geophysical Research Letters, 48(14): e2021GL093887, 2021.
59. Zhang, H., Nie, J., Liu, X., Pullen, A., Li, G., Peng, W., Zhang, H. Spatially variable provenance of the Chinese
Loess Plateau. Geology, 49(10): 1155-1159, 2021.
58. Ji, S., Ma, L., Nie, J., Chen, S., Sun, Y., Breecker, D.O. Quantifying soil-respired CO2 on the Chinese Loess
Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology, 562: 110158, 2021.
57. Liu, C., Nie, J., Li, Z., Qiao, Q., Abell, J.T., Wang, F., Xiao, W. Eccentricity forcing of East Asian monsoonal
systems over the past 3 million years. Proceedings of the National Academy of Sciences, 118(43): e2107055118,2021.
56. Ren, X., Nie, J., Saylor, J.E., Wang, X., Liu, F., Horton, B.K.Temperature Control on Silicate Weathering Intensity
and Evolution of the Neogene East Asian Summer Monsoon. Geophysical Research Letters, 47(15): e2020GL088808, 2020.
55. Nie, J., Ren, X., Saylor, J.E., Su, Q., Horton, B.K., Bush, M.A., Chen,W.,Pfaff, K. Magnetic polarity stratigraphy,
provenance, and paleoclimate analysis of Cenozoic strata in the Qaidam Basin, NE Tibetan Plateau. GSA Bulletin.
132(1-2): 310-320, 2019.
54. Ren, X., Nie, J., Saylor, J.E., Li, H., Bush, M.A., Horton, B.K. Provenance Control on Chemical Weathering Index of
Fluvio-Lacustrine Sediments: Evidence From the Qaidam Basin, NE Tibetan Plateau. Geochemistry, Geophysics,
Geosystems, 20(7): 3216-3224, 2019.
53. Su, Q., Nie, J., Luo, Z., Li, M., Heermance, R., Garzione, C. Detection of Strong Precession Cycles from the Late
Pliocene Sedimentary Records of Northeastern Tibetan Plateau. Geochemistry, Geophysics, Geosystems, 20(8): 3901-
3912, 2019.
52. Su, Q., Nie, J., Meng, Q., Heermance, R., Gong, L., Luo, Z., Wang, Z., Zhang, R., Garzione, C. Central Asian Drying
at 3.3 Ma Linked to Tropical Forcing? Geophysical Research Letters, 46(17-18): 10561-10567, 2019.
51. Wang, Z., Nie, J., Wang, J., Zhang, H., Peng, W., Garzanti, E., Hu, X., Stevens, T., Pfaff, K.,Pan, B. Testing
Contrasting Models of the Formation of the Upper Yellow River Using Heavy-Mineral Data From the Yinchuan Basin
Drill Cores. Geophysical Research Letters, 46(17-18): 10338-10345, 2019.
50. Gao, P., Nie, J., Li, M., Li, P. Confirmation of a Late Miocene Subchron C4n.2n-1r From the Eastern Qaidam Basin in
the NE Tibetan Plateau. Journal of Geophysical Research: Solid Earth, 124(12): 12354-12365, 2019.
49. Nie, J., Ruetenik, G., Gallagher, K., Hoke, G., Garzione, C., Wang, W., Stockli, D., Hu, X., Wang, Z., Wang, Y.,
Stevens, T., Danisik, M., Liu, S. Rapid incision of the Mekong River in the middle Miocene linked to monsoonal
precipitation. Nature Geoscience, 11: 944–948, 2018.
48. Nie, J., Garzione, C., Su, Q.,Liu, Q.,Zhang, R.,Heslop, D.,Necula, C.,Zhang, S., Song, Y.,Luo,Z., Dominant 100,000-
year precipitation cyclicity in a Late Miocene lake from northeast Tibet.Science Advances,3: e1600762, 2018.
47. Ji, S., Nie, J., Lechler, A., Huntington, K.W., Heitmann, E.O., Breecker, D.O. A symmetrical CO2 peak and
asymmetrical climate change during the middle Miocene. Earth and Planetary Science Letters, 499: 134-144, 2018.
46. Peng, W., Nie, J., Wang, Z., Qiang, X., Garzanti, E., Pfaff, K., Song, Y.,Stevens, T. A major change in
precipitation gradient on the Chinese Loess Plateau at the Pliocene-Quaternary boundary. Journal of Asian Earth
Sciences, 155: 134-138, 2018.
45. Peng, W.B., Wang, Z., Song, Y.G., Pfaff, K., Luo, Z., Nie, J., Chen, W.H, A comparison of heavy mineral assemblage
between the loess and the Red Clay sequences on the Chinese Loess Plateau. Aeolian Research, 21: 87-91, 2016.
44. Zhang, R., Necula, C., Heslop, D., Nie, J., Unmixing hysteresis loops of the late Miocene-early Pleistocene loess-
red clay sequence. Scientific Reports, 6: 29515., 2016.
43. Nie, J., T. Stevens, M. Rittner, D. Stockli, E. Garzanti, M. Limonta, A. Bird, S. Ando, P. Vermeesch, J. Saylor, H.
Lu, D. Breecker, X. Hu, S. Liu, A. Resentini, G. Vezzoli, W. Peng, A. Carter, S. Ji, and B. Pan, Loess Plateau
storage of Northeastern Tibetan Plateau-derived Yellow River sediment. Nature Communications, 6: 8511,2015.
42. Peng, W., Nie, J., Song, Y., Liu, S and Ji, S., Tracing provenance of Chinese loess and red clay based on the
zircon U-Pb dating technique: a review. Marine Geology Letters, 2: 1-9, 2014.
41. Nie, J., R. Zhang, C. Necula, D. Heslop, Q. Liu, L. Gong, and S. Banerjee, Late Miocene-early Pleistocene
paleoclimate history of the Chinese Loess Plateau revealed by remanence unmixing. Geophysical Research Letters,
41: 2163–2168, 2014.
40. Nie, J., T. Stevens, Y. Song, J. King, R. Zhang, S. Ji, L. Gong, and D. Cares, Pacific freshening drives Pliocene
cooling and Asian monsoon intensification. Scientific Reports, 4: 5474, 2014.
39. Nie, J., W. Peng, A. M?ller, Y. Song, D.F. Stockli, T. Stevens, B.K. Horton, S. Liu, A. Bird, J. Oalmann, H. Gong,
and X. Fang, Provenance of the upper Miocene-Pliocene Red Clay deposits of the Chinese loess plateau. Earth and
Planetary Science Letters, 407: 35-47, 2014.
38. Nie, J. and W. Peng, Automated SEM-EDS heavy mineral analysis reveals no provenance shift between glacial loess and
interglacial paleosol on the Chinese Loess Plateau. Aeolian Research, 13: 71-75, 2014.
37. Saylor, J.E., J.N. Knowles, B.K. Horton, Nie, J and A. Mora, Mixing of source populations recorded in detrital
zircon U-Pb age spectra of modern river sands. The Journal of Geology, 121(1): 17-33, 2013.
36. Nie, J., Y. Song, J.W. King, R. Zhang, and X. Fang, Six million years of magnetic grain-size records reveal that
temperature and precipitation were decoupled on the Chinese Loess Plateau during ~4.5-2.6 Ma. Quaternary Research,
79(3): 465-470, 2013.
35. Nie, J., W. Peng, K. Pfaff, A. M?ller, E. Garzanti, S. Andò, T. Stevens, A. Bird, H. Chang, Y. Song, S. Liu, and S.
Ji, Controlling factors on heavy mineral assemblages in Chinese loess and Red Clay. Palaeogeography,
Palaeoclimatology, Palaeoecology, 381-382: 110-118, 2013.
34. Nie, J., M. Jackson, J. King, and X. Fang, Characterizing the superparamagnetic grain distribution of Chinese red-
clay sequences by thermal fluctuation tomography. Global and Planetary Change, 110: 364-367, 2013.
33. Ji, S., Peng, T., Nie, J., and Peng, W. Quantitative paleotemperature reconstructions of the Chinese Loess
Plateau: A review. Marine Geology and Quaternary Geology, 33: 151-158, 2013.
32. Nie, J., B.K. Horton, J.E. Saylor, A. Mora, M. Mange, C.N. Garzione, A. Basu, C.J. Moreno, V. Caballero, and M.
Parra, Integrated provenance analysis of a convergent retroarc foreland system: U-Pb ages, heavy minerals, Nd
isotopes, and sandstone compositions of the Middle Magdalena Valley basin, northern Andes, Colombia. Earth Science
Reviews, 110(1-4): 111-126, 2012.
31. Nie, J., J. Zan, and Y. Song, Recent advances in red clay environmental magnetism on the Chinese Loess Plateau.
Quaternary Sciences, 32: 576-587, 2012.
30. Saylor, J.E., B.K. Horton, J. Nie, J. Corredor, and A. Mora, Evaluating foreland basin partitioning in the
northern Andes using Cenozoic fill of the Floresta basin, Eastern Cordillera, Colombia. Basin Research, 23(4):
377-402, 2011.
29. Nie, J., Coupled 100-kyr cycles between 3 and 1 Ma in terrestrial and marine paleoclimatic records. Geochemistry,
Geophysics, Geosystems, 12: Q10Z32.
28. Nie, J., Y. Song, J.W. King, X. Fang, and C. Heil, HIRM variations in the Chinese red-clay sequence: Insights into
pedogenesis in the dust source area. Journal of Asian Earth Sciences, 38: 96-104, 2010.
27. Nie, J., Y. Song, J.W. King, and R. Egli, Consistent grain size distribution of pedogenic maghemite of surface
soils and Miocene loessic soils on the Chinese Loess Plateau. Journal of Quaternary Science, 25: 261-266, 2010.
26. Nie, J., B.K. Horton, A. Mora, J.E. Saylor, T.B. Housh, J. Rubiano, and J. Naranjo, Tracking exhumation of Andean
ranges bounding the Middle Magdalena Valley Basin, Colombia. Geology, 38: 451-454, 2010.
25. Nie, J., J.W. King, and X. Fang, Tibetan uplift intensified the 400 k.y. signal in paleoclimate records at 4 Ma.
Geological Society of America Bulletin, 120(9-10): 1338-1344, 2008.
24. Nie, J., J. King, Z. Liu, S. Clemens, W. Prell, and X. Fang, Surface-water freshening: A cause for the onset of
North Pacific stratification from 2.75 Ma onward? Global and Planetary Change, 64(1-2): 49-52, 2008.
23. Nie, J., J. King, M. Jackson, X. Fang, and Y. Song, AC magnetic susceptibility studies of the Chinese red-clay
sediments between 4.8-4.1 Ma and their paleoceanographic and paleoclimatic implications. Journal of Geophysical
Research, 113: B10106, 2008.
22. Nie, J., J. King, and X. Fang, Late Pliocene-early Pleistocene 100-ka problem. Geophysical Research Letters, 35
(21): L21606,2008.
21. Nie, J., J. King, and X. Fang, The correlation between the magnetic susceptibility record of the Chinese aeolian
sequences and the marine benthic oxygen isotope record Geochemistry, Geophysics, Geosystems, 9: Q12026, 2008.
20. Nie, J., J. King, and X. Fang, Link between benthic oxygen isotopes and magnetic susceptibility in the red-clay
sequence on the Chinese Loess Plateau. Geophysical Research Letters, 35: L03703.
19. Nie, J., J. King, and X. Fang, Enhancement mechanisms of magnetic susceptibility in the Chinese Red-Clay sequence.
Geophysical Research Letters, 34: L19705.
18. Nie, J. Mapping pedogenic grain size of the Chinese red-clay sediments using ac magnetic susceptibility and thermal
fluctuation tomography. IRM Quarterly, 17: 2, 2007.
17. Nie, J., C. Song, X. Fang, X. Xu, and D. Sun, Paleomagnetic constraint on the Pleistocene appearance of the Yellow
River in the Guide Basin of the NE Tibetan Plateau and its geomorphologic implications. Marine Geology and
Quaternary Geology, 23: 59-64, 2003.
16. 聶軍勝,耿豪鵬,潘保田等.蘭州大學地學類專業外語多元化教學模式改革研究.高等理科教育,2023,(02):
15. 季順川,聶軍勝,馬龍,文靜雅,安玉英,范德仙,聶菊敏.定量重建黃土高原末次間冰期土壤呼吸CO_2濃度.第四紀研究,2023,43(02):33
6-344.
14. 鄧欣宜,聶軍勝,任雪萍.晚中新世柴達木盆地低偏心率時期傾角驅動的干濕變化.海洋地質與第四紀地質,2022,42(06):193-199.
13. 蘇慶達,聶軍勝,李祥忠,高鵬.柴達木盆地中新世-早上新世有機碳同位素記錄和植被演化歷史.第四紀研究,2022,42(04):948-957.
12. 劉方斌,聶軍勝.基于Pecube模型重建青藏高原東南緣臨滄花崗巖地區新生代階段性地貌演化.第四紀研究,2022,42(03):637-649.
11. 王釗,聶軍勝,彭文彬,張浩博,李峁潼.銀川盆地晚上新世物質來源及其對黃河上游形成年代的約束.沉積學報,2022,40(04):924-930.
10. 羅增,聶軍勝.早始新世氣候適宜期形成機制探討.地球環境學報,2021,12(03):233-242.
9. 劉方斌,聶軍勝,鄭德文,龐建章.青藏高原東南緣新生代剝露歷史及驅動機制探討:以臨滄花崗巖地區為例.地球科學進展,2021,36
(04):421-441.
8. 劉成英,高鵬,毛鵬宇,聶軍勝.新生代地磁漂移研究若干進展.海洋地質與第四紀地質,2019,39(02):1-13.
7. 王曉雪, 聶軍勝, JoelSaylor, 張蕊. 札達盆地晚中新世河湖相沉積物環境磁學特征與印度季風演化. 第四紀研究, 2018, 38(5):
1094-1100.
6. 聶軍勝, 李曼. 柴達木盆地晚中新世河湖相沉積物粒度組成及其古環境意義. 第四紀研究, 2017, 37(5): 1017-1026.
5. 蘇慶達, 聶軍勝, Joel E. Saylor, Brian K. Horton, Meredith A. Bush, 陳文漢. 柴達木盆地大紅溝剖面新生代地層磁組構特征
及構造意義. 第四紀研究, 2016, 36(4): 859-869.
4. 彭文彬,聶軍勝,宋友桂,劉善品,季順川.用鋯石U/Pb測年技術追蹤黃土紅黏土物源:進展與展望.海洋地質前沿,2014,30(02):1-9.
3. 季順川,彭廷江,聶軍勝,彭文彬.黃土高原微生物膜類脂物和碳酸鹽二元同位素重建古溫度的研究進展.海洋地質與第四紀地質,2013,
33(03):151-158.
2. 聶軍勝,昝金波,宋友桂.中國黃土高原紅粘土環境磁學研究進展.第四紀研究,2012,32(04):576-587.
1. 聶軍勝,宋春暉,方小敏,徐先海,孫東.貴德盆地黃河出現的古地磁年代及其意義.海洋地質與第四紀地質,2003(02):59-64.
團隊骨干成員:耿豪鵬
22. Zhang Y, Geng H, Cai S, et al. Tan DEM‐X preserves the relationship between hilltop curvature and erosion rate in
the Qilian Shan. Journal of Geophysical Research: Earth Surface, 2023: e2023JF007118.
21. Geng H, Xu W, Zheng W, et al. A hybrid mechanism for the initiation and expansion of loess caves across the Chinese
Loess Plateau. Land Degradation & Development, 2023.
20. Geng H, Zhang J, Xie R, et al. The constancy of chemical weathering intensity on hillslopes in the arid to semiarid
Qilian Mountains, NE Tibetan Plateau. Science of The Total Environment, 2023, 870: 161946.
19. Geng H, Hong Y, Milledge D G, et al. Frost cracking dictated landslide distribution in response to temperature
change since Last Glacial Maximum across the Eastern Qilian Mountains. Earth Surface Processes and Landforms,
2022, 47(13): 3163-3179.
18. Geng H, Cai S, Lü H, et al. How can a youthful mountain survive in a foreland setting? – Constraining the uplift
threshold rate by numerical simulation. Science Bulletin, 2022, 67(12): 1233-1235.
17. Zhang J, Geng H, Pan B, et al. Coupling of tectonic uplift and climate change as influences on drainage evolution:
A case study at the NE margin of the Tibetan Plateau. CATENA, 2022, 216: 106433.
16. Pan B, Cai S, Geng H. Numerical simulation of landscape evolution and mountain uplift history constrain—A case
study from the youthful stage mountains around the central Hexi Corridor, NE Tibetan Plateau. Science China Earth
Sciences, 2021, 64: 412-424.
15. Geng H, Liu R, Zheng W, et al. Interaction between animal burrowing and loess cave formation in the Chinese Loess Plateau. Frontiers in Earth Science, 2021: 1173.
14. Zhang J, Geng H, Pan B, et al. Climatic zonation complicated the lithology controls on the mineralogy and
geochemistry of fluvial sediments in the Heihe River basin, NE Tibetan Plateau. Quaternary International, 2020,
537: 33-47.
13. Cai S, Geng H, Pan B, et al. Topographic controls on the annual runoff coefficient and implications for landscape
evolution across semiarid Qilian Mountains, NE Tibetan Plateau. Journal of Mountain Science, 2020, 17(2): 464-479.
12. Geng H, Pan B, Huang B,et al.The spatial distribution of precipitation and topography in the Qilian Shan Mountains,
northeastern Tibetan Plateau. Geomorphology, 2017, 297: 43-54.
11. Geng H, Pan B, Milledge D G, et al. Quantifying sheet wash erosion rates in a mountainous semi‐arid basin using
environmental radionuclides and a stream power model. Earth surface processes and landforms,2015,40(13):1814-1826.
10. Pan B, Geng H, Hu X, et al. The topographic controls on the decadal-scale erosion rates in Qilian Shan Mountains,
NW China. Earth and Planetary Science Letters, 2010, 292(1-2): 148-157.
9. 耿豪鵬,蔡順,呂紅華等.年輕山地如何能在前陸盆地形成和保存?(英文).Science Bulletin,2022,67(12):1233-1235.
8. 耿豪鵬,高紅山,蔡順.地貌學課程中的思政教育元素——基于研究簡史和研究范式的分析.高等理科教育,2021(05):86-91.
7. 潘保田,蔡順,耿豪鵬.山體隆升歷史與地貌演化過程的數值模擬約束——以青藏高原東北緣河西走廊中段的周邊年輕上升山地為例.
中國科學:地球科學,2021,51(04):523-536.
6. 鄭煒珊, 耿豪鵬, 潘保田. 蘭州清水村黃土陷穴的侵蝕臨界研究. 蘭州大學學報(自然科學版), 2020, 56(3):326-332.
5. 鄭煒珊, 耿豪鵬, 顧國強,等. 定西于家山黃土洞穴的分布特征與侵蝕臨界研究. 水土保持學報, 2020, 34(4):7.
4. 曹喜林,耿豪鵬,潘保田,胡小飛.活動褶皺地區橫向河演化與風口形成的研究進展和案例分析.地震地質,2020,42(03):670-687.
3. 蔡順,耿豪鵬,鄭煒珊,潘保田.基于傅里葉變換的谷間距特征信息提取及其影響因素研究.地球信息科學學報,2020,22(03):399-409.
2. 陳立萍,耿豪鵬,張建,趙啟明,潘保田.黑河流域基巖回彈值(施密特錘)的空間分布特征及其指示意義.冰川凍土,2019,41(02):364-
373.
1. 耿豪鵬,潘保田,王超,黃波.基于GIS與USLE的榆中縣土壤侵蝕.蘭州大學學報(自然科學版),2009,45(06):8-13.
團隊骨干成員:高紅山
20. Li P, Gao H, Yan T, et al. The nature and controls on downstream change of channel sediment along the Shiyang
River, Northwest China. Frontiers in Earth Science, 2023, 11: 1112772.
19. Gao H, Liu F, Yan T, et al. Drainage Density and Its Controlling Factors on the Eastern Margin of the Qinghai-Tibet
Plateau. Frontiers in Earth Science, 2022, 9: 1280.
18. Gao H, Li Z, Liu F, et al. Terrace formation and river valley development along the lower Taohe River in central
China. Geomorphology, 2020, 348: 106885.
17. Liu F, Gao H, Pan B, et al. Quantitative analysis of planation surfaces of the upper Yangtze River in the Sichuan-
Yunnan Region, Southwest China. Frontiers of Earth Science, 2019, 13: 55-74.
16. Gao H, Li Z M, Liu X F, et al. Fluvial terraces and their implications for Weihe River valley evolution in the Sanyangchuan Basin. Science China Earth Sciences, 2017, 60: 413-427.
15. Gao H, Li Z, Ji Y, et al. Climatic and tectonic controls on strath terraces along the upper Weihe River in central
China. Quaternary Research, 2016, 86(3): 326-334.
14. Gao H, Liu X, Pan B, et al. Stream response to Quaternary tectonic and climatic change: evidence from the upper
Weihe River, central China. Quaternary International, 2008, 186(1): 123-131.
13. 劉芬良,高紅山,李宗盟,潘保田,蘇懷.金沙江巧家—蒙姑段的階地發育與河谷地貌演化.地理學報,2020,75(05):1095-1105.
12. 王營,高紅山,趙珂梓,李宗盟,劉芬良,潘保田.渭河三陽川盆地最高級階地的年代厘定及其對河谷發育的指示意義.山地學報,2020,38
(01):1-8.
11. 劉芬良,高紅山,李宗盟,潘保田,蘇懷.金沙江龍街段晚更新世以來的階地發育與河谷地貌演化.地球科學進展,2020,35(04):431-440.
10. 劉芬良,高紅山,胡小飛,李宗盟,潘保田,王姣姣.金沙江攀枝花至凹嘎段水系河道縱剖面形態特征及其對河谷發育的指示.蘭州大學學
報(自然科學版),2019,55(02):149-157.
9. 李富強,高紅山,張連科,李宗盟,龐紅麗,潘保田.基于粒度參數特征對黃河后套平原段巖芯沉積環境的分析.沉積學報,2019,37(06):12
34-1243.
8. 高紅山,李宗盟,劉小豐,潘保田,吳雅婕,劉芬良.三陽川盆地渭河階地發育與河谷地貌演化.中國科學:地球科學,2017,47(02):191-
204.
7. 高紅山,潘保田,李炳元,李瓊.地貌學的基本范式及其在教學科研中的作用.地理科學,2015,35(12):1591-1598.
6. 李宗盟,高紅山,潘保田,張忱,劉芬良,管東升.賀蘭山水系流域數值地貌特征及其構造指示意義.干旱區地理,2012,35(03):422-429.
5. 高紅山,潘保田,鄔光劍,李吉均,李炳元,業渝光.祁連山東段沖積扇的發育時代及其成因.蘭州大學學報,2005(05):6-9.
4. 高紅山,潘保田,鄔光劍,李吉均,李炳元,Douglas Burbank,業渝光.祁連山東段河流階地的形成時代與機制探討.地理科學,2005(02):
197-202.
3. 高紅山,潘保田,李吉均,鄔光劍,李炳元,業渝光.祁連山東段金塔河流域層狀地貌時代與成因探討.山地學報,2005(02):129-135.
2. 高紅山,潘保田,李吉均,隋玉柱.青藏高原隆升過程與環境變化.青島大學學報(工程技術版),2004(04):40-47.
1. 高紅山,潘保田,鄔光劍,李吉均,管清玉,王均平,業渝光.祁連山東段剝蝕面與青藏高原隆升.冰川凍土,2004(05):540-544.
團隊骨干成員:王杰
18. Chen X J, Wang J, Zou L Y,et al.Ice flux of alpine glaciers controls erosion and landscape in the Nianbaoyeze Shan,
northeastern Tibetan Plateau. Journal of Mountain Science, 2023, 20: 1884–1899.
17. Wang J, Wang W, Cao B, et al. Millennial-scale glacier fluctuations on the southeastern Tibetan Plateau during MIS
2. Earth and Planetary Science Letters, 2023, 601: 117903.
16. Yao P, Wang J, Harbor J M, et al. The relative efficiency and influence of glacial and fluvial erosion on Tibetan
Plateau landscapes. Geomorphology, 2020, 352: 106988.
15. Cui H, Wang J, Yu B, et al. Marine Isotope Stage 3 paleotemperature inferred from reconstructing the Die Shan ice
cap, northeastern Tibetan Plateau. Quaternary Research, 2018, 89(2): 494-504.
14. Wang J, Yao P, Yu B, et al. Controls on spatial variations of glacial erosion in the Qilian Shan, northeastern
Tibetan Plateau. Geomorphology, 2018, 318: 128-138.
13. Wang J, Cui H, Harbor J M, et al. Mid‐MIS3 climate inferred from reconstructing the Dalijia Shan ice cap, north-
eastern Tibetan Plateau. Journal of Quaternary Science, 2015, 30(6): 558-568.
12. Wang J, Kassab C, Harbor J M, et al. Cosmogenic nuclide constraints on late Quaternary glacial chronology on the
Dalijia Shan, northeastern Tibetan Plateau. Quaternary Research, 2013, 79(3): 439-451.
11. Wang J, Pan B T, Zhang G L, et al. Late Quaternary glacial chronology on the eastern slope of Gongga Mountain,
eastern Tibetan Plateau, China. Science China Earth Sciences, 2013, 56: 354-365.
10. Wang J, Zhou S Z, Zhao J D, et al. Quaternary glacial geomorphology and glaciations of Kongur Mountain, eastern
Pamir, China. Science China Earth Sciences, 2011, 54: 591-602.
9. Shangzhe Z, Wang J, Xu L, et al.Glacial advances in southeastern Tibet during late Quaternary and their implications
for climatic changes. Quaternary International, 2010, 218(1-2): 58-66.
8. 王杰,雷滿紅,鄭利敏.山地冰川冰消后(paraglacial)沉積的粒度與石英顆粒表面特征——以貢嘎山東坡為例.冰川凍土,2022,44
(04):1150-1164.
7. 姚盼,王杰,林文旺,曾蘭華,陳仁容.基于Hkr值的北天山冰川侵蝕空間分布特征及其主控因素研究.冰川凍土,2022,44(04):1260-1269.
6. 王濰誠, 王杰. 底部剪切應力影響因素及其在中國西部冰川研究中的取值. 蘭州大學學報:自然科學版, 2022, 58(1):9.
5. 崔航,王杰.基于冰川平衡線高度變化的氣候重建模型研究.海洋地質與第四紀地質,2013,33(04):17-24.
4. 崔航,王杰.冰川物質平衡線的估算方法.冰川凍土,2013,35(02):345-354.
3. 曹泊,王杰,潘保田,張興余,崔航.祁連山東段寧纏河1號冰川和水管河4號冰川表面運動速度研究.冰川凍土,2013,35(06):1428-1435.
2. 王杰,潘保田,張國梁,崔航,曹泊,耿豪鵬.貢嘎山東坡中更新世晚期以來冰川作用年代學研究.中國科學:地球科學,2012,42(12):1889-
1900.
1. 王杰,周尚哲,趙井東,鄭景雄,郭向中.東帕米爾公格爾山地區第四紀冰川地貌與冰期.中國科學:地球科學,2011,41(03):350-361.
團隊骨干成員:胡小飛
21. Hu X, Zhang Y, Guo J, et al. How does climate affect the topography in tectonically active orogens. Earth Surface
Processes and Landforms, 2023, 45(6): 1267-1280.
20. Hu X, Wu J, Wen Z, et al. Fluvial evolution in a growing thrust-fold range of the Yumu Shan, NE Tibetan Plateau.
Earth and Planetary Science Letters, 2022, 594: 117704.
19. Cao X, Hu X, Pan B, et al. Spatiotemporal Variation of Late Quaternary River Incision Along the Heihe River in the
Northeastern Tibetan Plateau, Constrained by Dating Fluvial Terraces. Frontiers in Earth Science, 2022,10: 929599.
18. Cao X, Hu X, Pan B, et al. Using fluvial terraces as distributed deformation offset markers: Implications for
deformation kinematics of the North Qilian Shan Fault. Geomorphology, 2021, 386: 107750.
17. Hu X, Ji X, Cao X, et al. Test on the reliability of the subsurface fault geometry estimated by deformed river
terraces along the Bailang River, north front of the Qilian Shan (North West China). Frontiers in Earth Science,
2021, 9: 665047.
16. Hu X, Cao X, Li T, et al. Late Quaternary fault slip rate within the Qilian Orogen, insight into the deformation
kinematics for the NE Tibetan Plateau. Tectonics, 2021, 40(5): e2020TC006586.
15. Hu X, Chen D, Pan B, et al. Sedimentary evolution of the foreland basin in the NE Tibetan Plateau and the growth of
the Qilian Shan since 7 Ma. GSA Bulletin, 2019, 131(9-10): 1744-1760.
14. Cao X, Hu X, Pan B, et al. A fluvial record of fault-propagation folding along the northern Qilian Shan front, NE
Tibetan Plateau. Tectonophysics, 2019, 755: 35-46.
13. Hu X, Wen Z, Pan B, et al. Constraints on deformation kinematics across the Yumu Shan, NE Tibetan Plateau, based on
fluvial terraces. Global and Planetary Change, 2019, 182: 103023.
12. Hu X, Kirby E, Pan B, et al. Cosmogenic burial ages reveal sediment reservoir dynamics along the Yellow River,
China. Geology, 2011, 39(9): 839-842.
11. Hu X, Pan B T, Kirby E, et al. Spatial differences in rock uplift rates inferred from channel steepness indices
along the northern flank of the Qilian Mountain, northeast Tibetan Plateau. Chinese Science Bulletin, 2010, 55:
3205-3214.
10. 張亞男,胡小飛,潘彥菲.北祁連山和東昆侖山的地貌特征對比及其對構造抬升的指示意義.第四紀研究,2022,42(03):809-822.
9. 賀鑫,胡小飛,潘保田.黃河蘭州段河谷演化研究與認識.地球科學進展,2020,35(04):404-413.
8. 陳殿寶, 陳進軍, 胡小飛, 蘇航, 陳穎, 張建. 祁連山北麓梨園河沉積物粒徑的變化特征與分析. 第四紀研究, 2018, 38(6): 1336-
1347.
7. 陳苗,胡小飛,王維.走廊南山河流縱剖面高海拔裂點的成因.地理學報,2018,73(09):1702-1713.
6. 溫振玲, 胡小飛, 潘保田, 張建, 曹喜林. 金塔南山河流礫石特征指示的青藏高原東北緣地貌演化. 第四紀研究, 2016, 36(4): 907
-916.
5. 胡小飛,潘保田,李瓊.基巖河道水力侵蝕模型原理及其最新研究進展.蘭州大學學報(自然科學版),2014,50(06):824-831.
4. 胡小飛,潘保田,高紅山,胡振波,曹泊,李清洋,耿豪鵬.祁連山東段全新世河流階地發育及其與氣候變化的關系研究.第四紀研究,2013,
33(04):723-736.
3. 胡小飛,潘保田,KIRBY Eirc,李清洋,耿豪鵬,陳吉峰.河道陡峭指數所反映的祁連山北翼抬升速率的東西差異.科學通報,2010,55(23):
2329-2338.
2. 胡小飛,潘保田.磷灰石(U-Th)/He熱年代學方法及其在地貌演化研究中的應用.原子能科學技術,2008(07):662-664.
1. 胡小飛,潘保田,蘇懷,安春雷,周天.宛川河階地的年代與下切機制.地理科學,2007(06):808-813.
團隊骨干成員:胡振波
11. Pan B, Li X, Hu Z, et al. Channel migration in the northeastern margin of the Tibetan Plateau and its implication
for fluvial response to the interaction between rapid tectonic activity, climatic fluctuation and human influence.
Quaternary Science Reviews, 2023, 310: 108126.
10. Dong, Z., Pan, B., Hu, Z., Mo, Q., Bridgland, D., Li, MH., Li, XH., Yang, YN.,Chen, DB. Evaluation of the Fluvial
Response to Tectonic Uplift From Grain Size Distribution in Riverbed Gravels at the Northeastern Margin of the
Tibetan Plateau. Frontiers in Earth Science, 10: 824368, 2022.
9. Bridgland D R, Westaway R, Hu Z. Basin inversion: A worldwide Late Cenozoic phenomenon. Global and Planetary Change,
2020, 193: 103260.
8. Bridgland D R, Hu Z, Vandenberghe J, et al. Late Cenozoic fluvial history worldwide: a context for the Yellow River
record. Global and planetary change.,2020, 193: 103274.
7. Hu Z, Li M H, Dong Z J, et al. Fluvial entrenchment and integration of the Sanmen Gorge, the Lower Yellow River.
Global and Planetary Change, 2019, 178: 129-138.
6. Wang J, Hu Z, Pan B, et al.Spatial distribution pattern of channel steepness index as evidence for differential rock
uplift along the eastern Altun Shan on the northern Tibetan Plateau. Global and Planetary Change, 2019,181:102979.
5. Su H, Dong M, Hu Z. Late Miocene birth of the Middle Jinsha River revealed by the fluvial incision rate. Global and
Planetary Change, 2019, 183: 103002.
4. Hu Z, Pan B T, Bridgland D, et al. The linking of the upper-middle and lower reaches of the Yellow River as a result
of fluvial entrenchment. Quaternary Science Reviews, 2017, 166: 324-338.
3. Hu Z, Pan B, Guo L, et al. Rapid fluvial incision and headward erosion by the Yellow River along the Jinshaan gorge
during the past 1.2 Ma as a result of tectonic extension. Quaternary Science Reviews, 2016, 133: 1-14.
2. Hu Z, Pan B, Wang J, et al. Fluvial terrace formation in the eastern Fenwei Basin,China, during the past 1.2 Ma as a
combined archive of tectonics and climate change. Journal of Asian Earth Sciences, 2012, 60: 235-245.
1. 李曉花,胡振波,潘保田,李夢昊,莫欽鴻,董子娟,王軍.全新世氣候波動與快速構造活動作用下的酒東盆地北大河河道遷移過程研究.
第四紀研究,2021,41(01):1-13.